

本日の説明内容

- 1. 会社概要
- 2. ガンマ線とは?
- 3. 照射の方法
- 4. 特徴と注意点
- 5. 実際の流れ (お申込み~出荷)
- 6. 利用されている製品例

1. 会社概要

会社概要

•設 立:1981年(昭和56年)10月1日

•資本金: 1,000万円

•社員数: 74人

•事業所:

本社・本社工場 第二工場・滅菌研究センター

•照射装置:

1号機、2号機、3号機

所在地:滋賀県甲賀(こうか)市

業務内容1

・ガンマ線照射受託サービス

当社が受託している主な製品例

滅菌・殺菌

医療機器

衛生 用品

医薬品

化粧品

包装 容器

包装 資材

実験 動物 飼料

検査 器具

再生 医療 関連

高分子 材料の 改質

【許可・登録】

医療機器製造業 医薬品製造業 化粧品製造業 再生医療等製品製造業 米国食品医薬品局 (FDA) 【認証】

ISO9001 : 品質マネジメントシステム

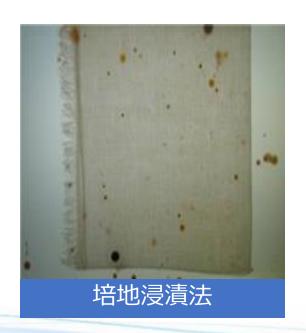
ISO13485: 医療機器 - 品質マネジメントシステム - ISO11137: ヘルスケア製品の滅菌 - 放射線滅菌 -

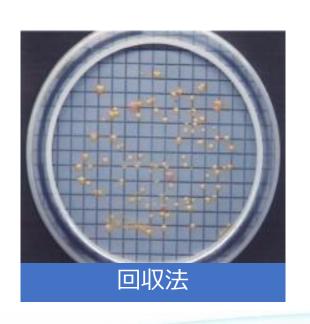
業務内容 2-1

・微生物試験受託サービス

菌数(バイオバーデン)測定

微生物同定試験


無菌性の試験など



菌数(バイオバーデン)測定

製品に付着している生きた微生物数を測定します。

対象製品に適した試験方法を選択することで微生物がコロニー(集団)となり目視でバイオバーデンを 測定できます。

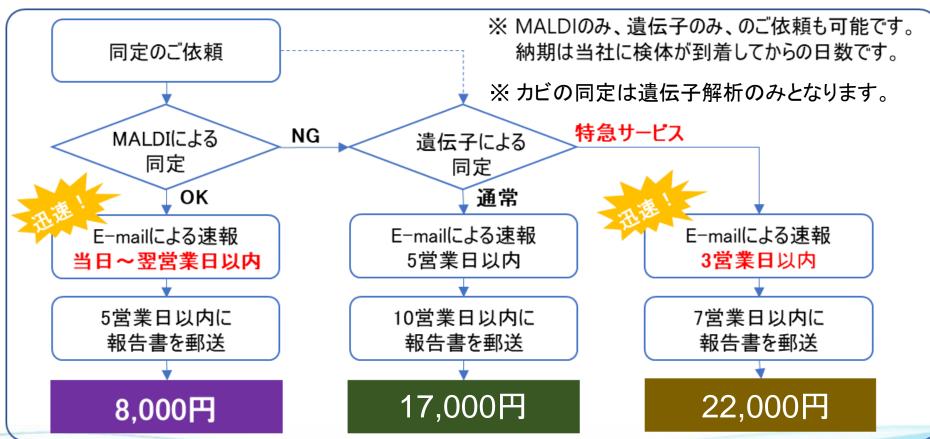
微生物同定試験

MALDI-TOF MS

- ・微生物のタンパク質を質量分析 計で分析し標準菌と比較して同 定
- 信頼性も高く迅速かつ安価

•遺伝子同定法

- ・リボソーム遺伝子のRNA塩基配列を 解析することで同定
- 現在の系統分類の基礎となっている 同定法



微生物同定試験

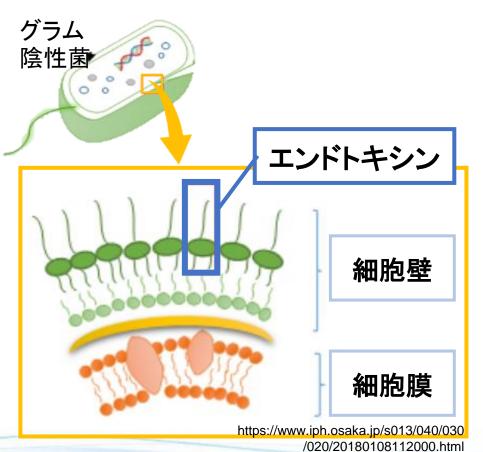

対象物に存在する微生物を同定しておくことが重要です。

微生物同定試験

本資料は、当社の知見、WEB資料、保有する文献、データを参考に作成しています。 本資料の取り扱いにより生じた不利益については、当社は責任を負いません。 参考資料としてご利用ください。

無菌性試験

生きている微生物が存在しないことを確認 するために無菌性の試験を実施します。 培地に試験対象品を浸けて培養し、培養液の濁りを 見ます。


左:陰性 右:陽性

業務内容 2-2

・エンドトキシン測定受託サービス

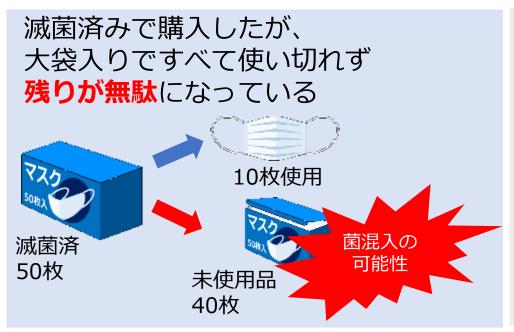
=体内に入ると発熱などを引き起こす可能性がある

FDA 21 CFR Part 11 準拠 薬局方準拠 富士フイルム和光純薬株式会社

トキシノメーター ET-7000

業務内容3

- ・小分け・包装作業受託サービス
 - ・対象の製品は外気に触れないように**密封**してください



- ・滅菌状態で密封できていれば、滅菌状態は維持可能と考えられる
- = 開封後は菌が混入する恐れあり

1度に使用する量に小分け・包装する仕様をお勧めします。

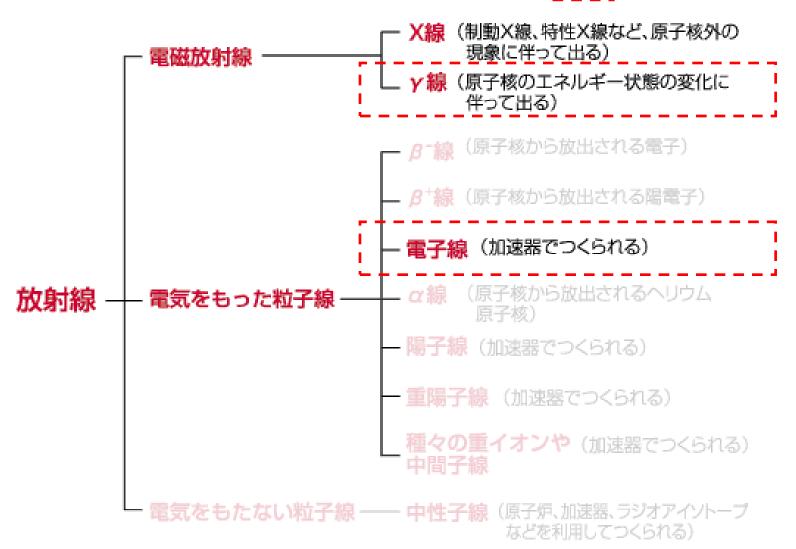
<u>小分け・包装作業でお困りではありませんか?</u>

- ・小分け・包装するための時間や機材がない
- ・ガンマ線処理に適した包装・梱包がわからない

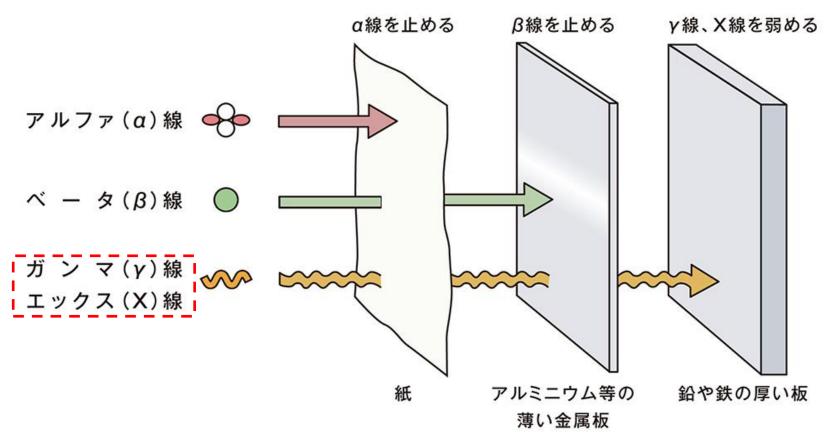
当社でご要望に応じた小分け・包装作業が可能です。

2. ガンマ線とは?

放射線とは・・・

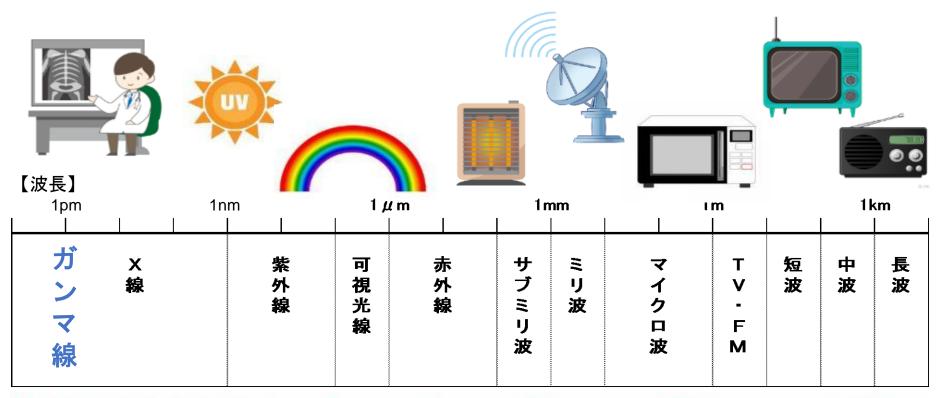

水素分子

電離性放射線 高いエネルギー順位 励起 放出電子● 電離


•電子と反応する力を持つ粒子や電磁波

放射線の種類

放射線の透過力



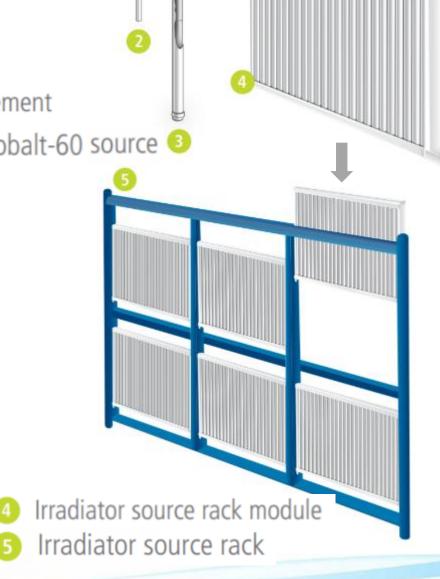
https://www.ene100.jp/zumen/6-1-6

ガンマ線、エックス線は高い透過力を持っています

ガンマ線とは?

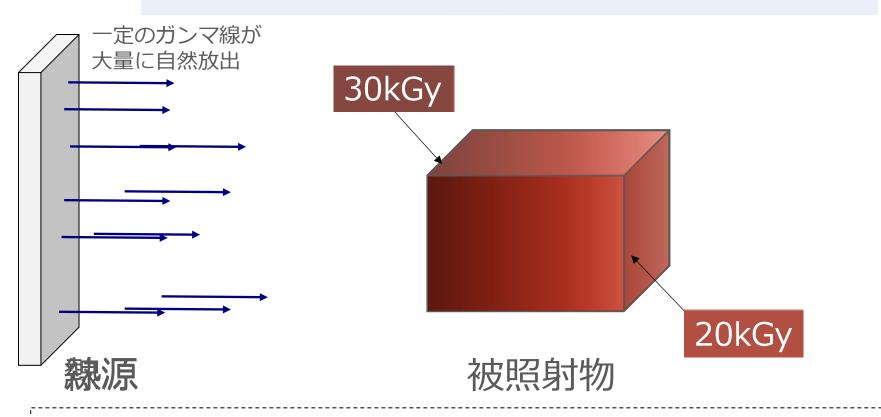
ガンマ線は電磁波(光)の一種です

電磁波は波長により性質が異なり、様々な分野で利用されています。


ガンマ線源

コバルト60 を使用

- Cobalt-60 slugs
- Cobalt-60 inner source element
- Nordion source C-188 Cobalt-60 source



- Nordion(カナダ)製
- C-188型 棒状線源

ガンマ線の吸収線量

照射のご依頼は、吸収線量をご指示いただきます

物質1kgに1J(ジュール)のエネルギーが吸収されたとき

= 1 J /kg = 1Gy(グレイ)

例)医療機器:最小25kGy、検査器具:最小10kGy

ガンマ線で微生物が死滅する仕組み

①直接DNAが損傷

②ラジカルなどが発生し 間接的にDNAが損傷 DNAが切断 される

DNA

ラジカル

滅菌と殺菌・消毒の違い

局方解説書

滅菌: 物質からすべての微生物を殺滅または

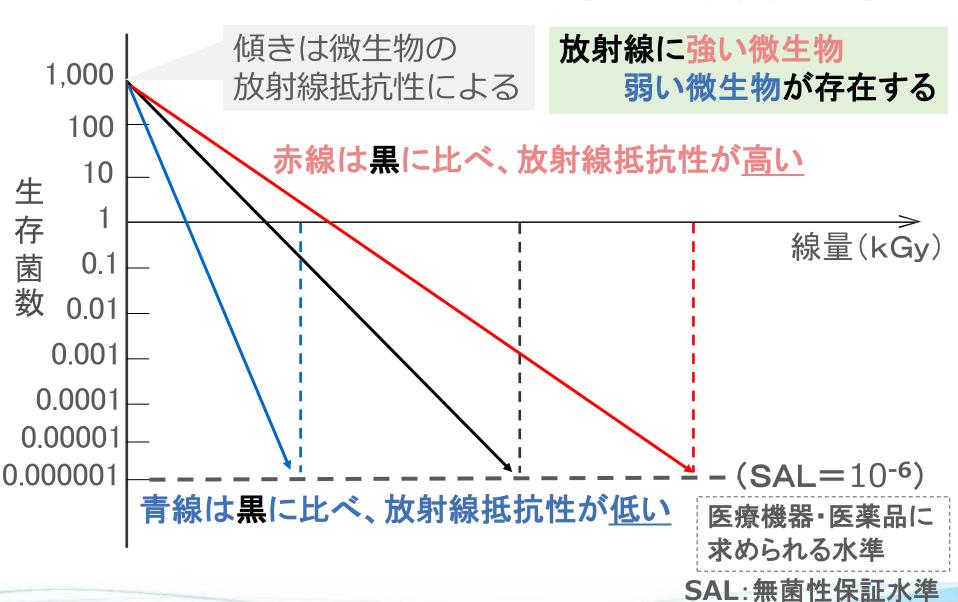
除去すること

ガンマ線照射で滅菌を保証するには 微生物の**数と種類(抵抗性)**

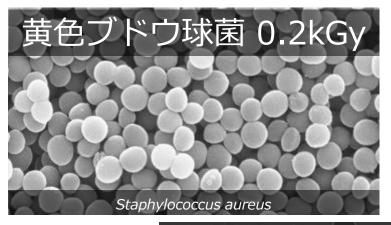
の情報が必要

殺菌 : 微生物を殺すこと

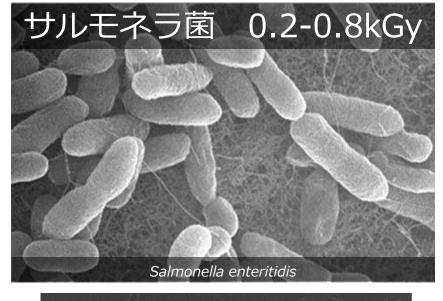
消毒: 病原菌等人に対し有害な微生物を除去、


死滅、無害化すること

殺菌、消毒の定義には、定量性がない 滅菌の定義には定量性がある


線量増加と菌数減少

【微生物の種類(抵抗性)】




25

様々な微生物のD₁₀値*_{D10値: 菌数が1/10になる線量}

微生物の種類により放射線抵抗性が異なります。

芽胞形成菌

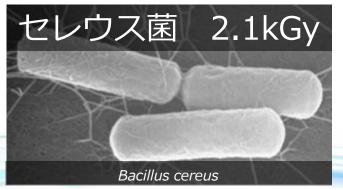
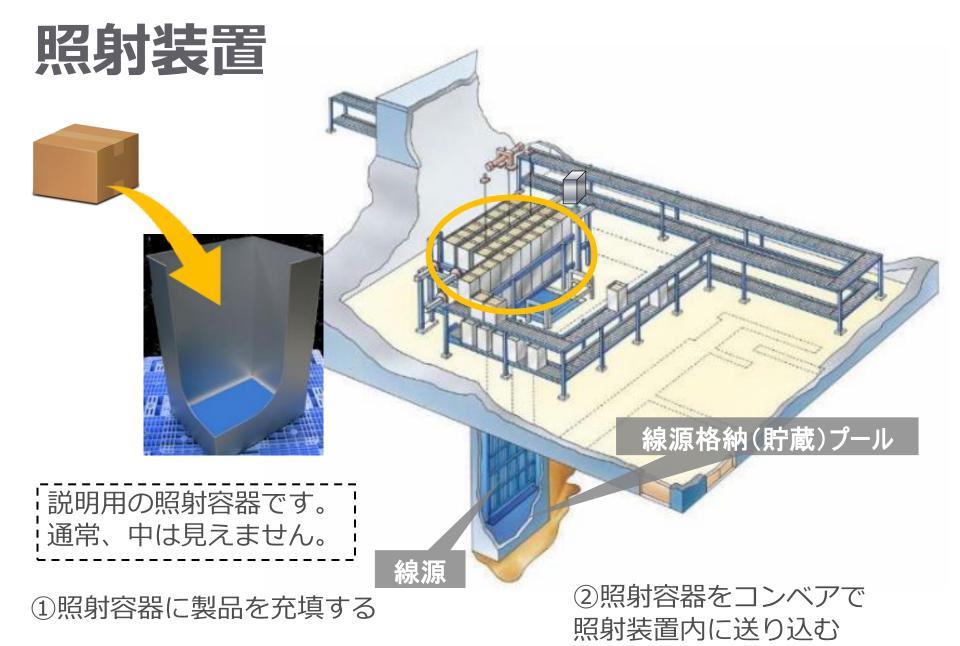
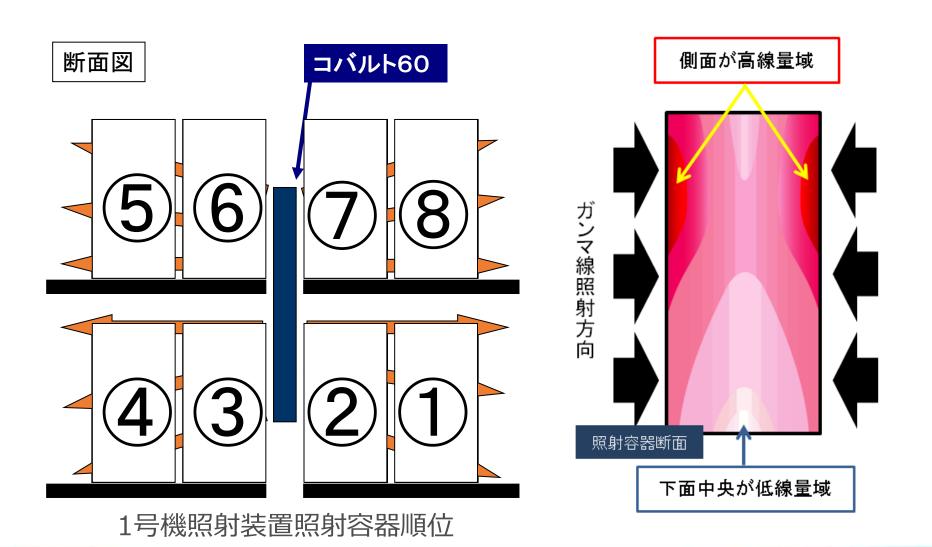
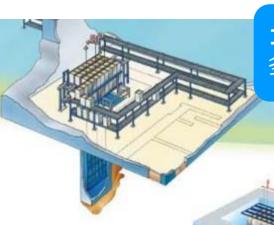



写真:ヤクルト中央研究所HPより


では、放射線滅菌の現状と展望(Ⅲ.生薬・漢方)より

3. 照射の方法



繁コーガアイントース

照射容器の線量分布

3つの照射装置

1号機

多種多様な製品向け

3号機

低線量(0.1kGyから)による 検定線量、試験照射向け

2号機

完全自動化による 大量生産向け

> 地震対策のため照射装置は強固な 岩盤の上に設置されています

> > 3つの照射装置でお客様からの 様々なご依頼にお応えできます。

照射容器寸法

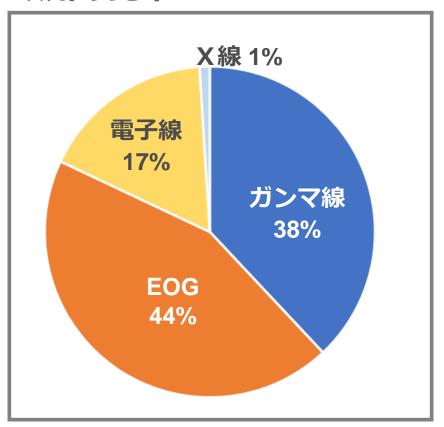
1・3号機

460×580×890(mm)

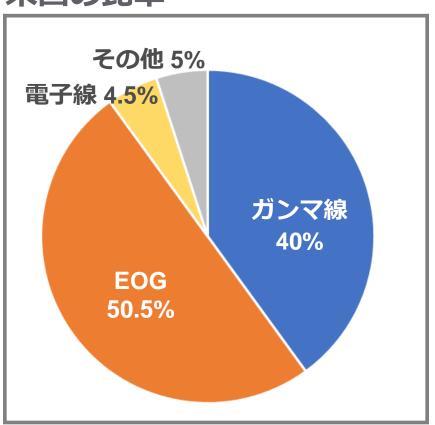
2号機

560×825×1830(mm)

体積比: 3.6倍

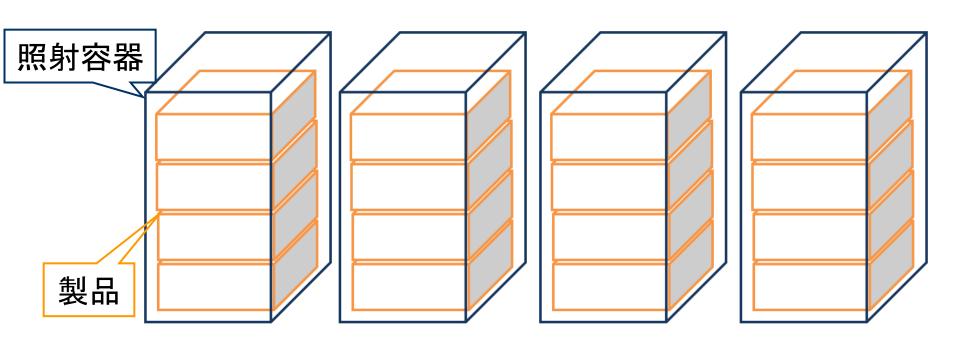

4. 特徴と注意点

滅菌方法の比較


	ガンマ線	電子線	EOG (酸化エチレンガス)	オートクレーブ (湿熱)
処理方式	連続	連続	バッチ (単一)	バッチ (単一)
処理時間	数時間	数分	数時間	数時間
包装形態	最終包装形態	最終包装形態 (厚み制限付)	ガスが浸透する 包装・梱包	蒸気が浸透する 包装・梱包
製品密度	高密度でも可能	密度の小さい製品 が望ましい	ガスが浸透すれば 制限なし	蒸気が浸透すれば 制限なし
残留物	なし	なし	ガスうや生成物残 留の可能性あり	なし
処理温度	室温	室温	約50℃	約120℃
圧力変化	なし	なし	加圧・減圧	加圧・減圧
後処理	不要	不要	ガス抜き	乾燥
出荷確認	線量の確認	線量の確認	パラメータの確認 またはBIの確認	パラメータの確認 またはBIの確認
製品材質	材質によっては 変化・着色あり	材質によっては 変化・着色あり	ガスが吸着しない こと	耐熱性であること

滅菌方法別比率

欧州の比率


米国の比率

19th International Meeting on Radiation Processing(2019) 講演資料より作成

処理方法·処理時間

✓製品の量を気にせず、数時間で処理ができます。

電子線	EOG	湿熱	
連続・数分	バッチ式・数時間	バッチ式・数時間	

対象製品の包装・梱包

✓包装・梱包形態を選ばず滅菌処理できます。

- ・製品箱の状態で処理してそのまま出荷できます
- ・開封しないので、異物混入の心配がありません

電子線	EOG	湿熱
最終包装形態	ガスが浸透する	蒸気が浸透する
(厚み制限あり)	包装・梱包が必要	包装・梱包が必要

対象製品の構造

✓複雑な構造や、高密度でも処理できます。

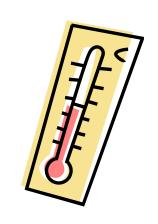
- ✓ 製品内部に空洞(密封部分)があるもの
- ✓ 金属性の製品(インプラントなど)
- ✓ 容器に入った液体、袋に入った粉体など

電子線	EOG	湿熱
密度の小さい製品 でないと透過しない	ガスが浸透する構造 が不可欠	蒸気が浸透する構造 が不可欠

残留物

✓有害残留物の心配はありません。

製品から放射線が放出されることもありません。


電子線	EOG	湿熱
なし	ガスが残留する	なし

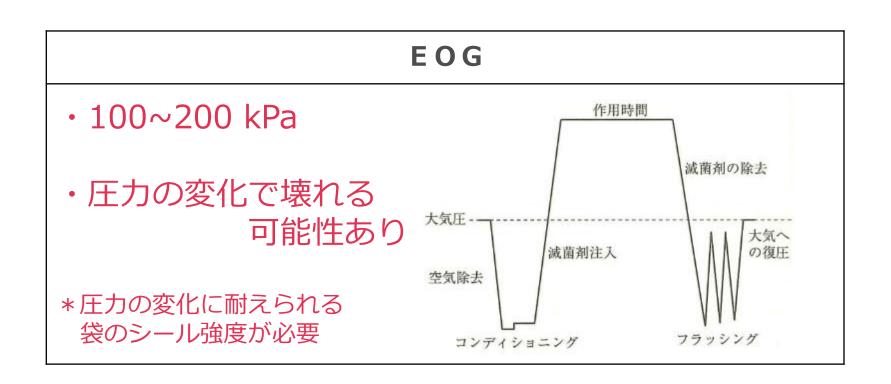
処理温度

✓常温で処理できます。

その他、

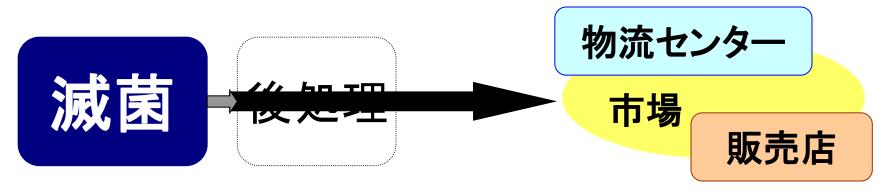
- ✓高温、蒸気などを嫌う製品
- ✓冷蔵品、冷凍品

の処理も可能です。



【冷凍照射】製品とドライアイスを一緒に梱包

電子線	EOG	湿熱
常温	約 50 ℃ (湿度 60%)	1 21 ℃


圧力変化

- ✓大気圧下で処理します。
- ✓加圧・減圧工程はありません。

後処理

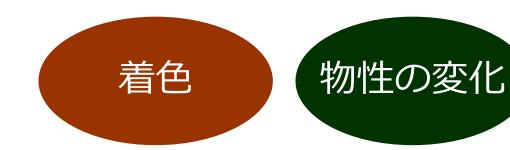
•後処理不要ですぐに使用可能です。

- ・短納期対応可能です。
- ・お客様の工程管理が容易になります。

電子線	EOG	湿熱
不要	ガス抜き (数日から数週間)	乾燥

出荷確認

•線量の確認だけで出荷できます。



電子スピン共鳴装置にて線量測定

電子線	EOG	湿熱
線量確認	・パラメータ確認・B I 試験	・パラメータ確認・B I 試験

製品材質

・滅菌方法により材質の不向きがございます。 放射線照射は、材質によって、物性の変化が 生じます。

照射臭

電子線	EOG	湿熱
材質によって 変色・劣化有り	ガスが吸着しないこと 加圧・減圧に耐えられ ること	耐熱性であること 加圧・減圧に耐えられ ること

材質変化の対策方法

- ●低い線量で処理する
- ●影響を受けやすい材料を使用しない
- ●耐放射線仕様の材料を利用する
- ●低温(冷凍)状態で照射する
- ●脱酸素状況下で照射する
- ●ガス吸着袋、吸着剤を利用して不要なガス (照射臭)を吸着させる
- →各種対策をご提案いたします。 ご相談ください。

5. 実際の流れ

(お申込み~出荷)

1申込受付(新規)

当社HP (http://www.koga-isotope.co.jp/)

2. 製品登録

「製品一覧」から、右上の「新規」をクリックし、照射製品の情報を入力してください。

1. 企業登録

「初めての方へ」から企業登録いただき、 IDとパスワードを入手してください。

3. 照射申込

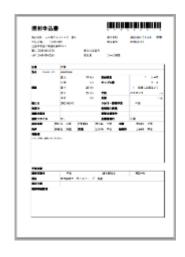
3種類のお申込み方法より選択ください。 登録済みの製品を選択し、スケジュール 発送先を入力してください。

1申込受付(2回目以降)

当社HP (http://www.koga-isotope.co.jp/)

不要

不要


3. 照射申込

3種類のお申込み方法より選択ください。 登録済みの製品を選択し、スケジュール 発送先を入力してください。

2 照射品の送付

- ・お申込み後、メールにて返信される照射申込書(PDF)をバーコード部分が見えるように製品に貼付をお願いします。
- *複数ケース数の申込でも貼付は1箱で結構です。

照射申込書

貼り付け位置は、試験依頼品のどの場 所でも結構です。

試験品が小さい場合、 バーコード部分だけを お貼りいただいても結 構です。

お客様の大事な製品を識別するために必要になります。

お手数をおかけしますが、ご協力よろしくお願いいたします。

③搬入

申込書(バーコード)読み取り

外観確認

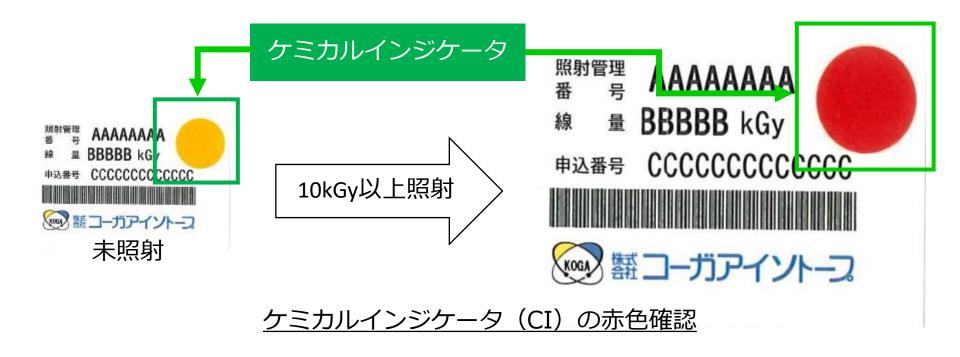
申込書(バーコード)から情報を読み取り、顧客名、品名、 ケース数など、申込内容との照合を行います。 製品は未照射品倉庫で保管します。

4照射準備

照射管理ラベルの貼付

照射容器への充填作業

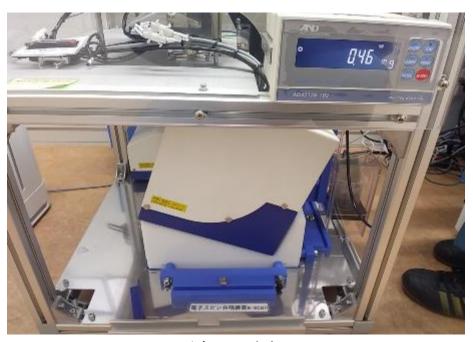
製品に線量計の取り付けと照射管理ラベルの貼付を行い、照射容器に開梱せずに充填します。


5 照射

照射容器に充填された製品は、自動制御により照射室に搬送され、ガンマ線照射されます。

照射が終わると、照射済品保管倉庫で保管されます。

6照射後の取出し



製品が照射されたことを確認するためにケミカルインジケータ の赤色確認を行います。製品が照射されたことを確認した後、 入荷した状態(バラ、パレタイズなど)に積載します。

7検査

測定準備

線量測定

製品と一緒に照射された線量計を測定し、お客様の要求通りの線量であったことを確認します。

8出荷

製品の最終確認を行い、お客様の希望される納品日時、納品場所に出荷します。

9報告書発行

照射報告書 (例)

線量測定結果をまとめ、照射報告書を発行し、メール(PDF)に て送付連絡します。

6. 利用されている製品例

滅菌が必要な単回使用の医療機器

=使い捨て

縫合糸

手術時に開放部を縫合

人工関節

骨折した膝関節や 股関節と入れ替え て関節機能を回復

シリンジ(注射筒)

滅菌後に医薬品を充填して販売(プレフィルドシリンジ)

ダイアライザー (人工腎臓)

人工透析で使用 国内の透析患者数 34万人*

*2019 年日本透析医学会統計 調査報告書より

ランセット(穿刺針)

血糖値測定用の血液 を出すために、指先に 穴を開ける針

ガンマ線照射実施例(包装関連)

液体の輸送に使用

ホイップクリームの袋、無菌米飯の蓋などの包装

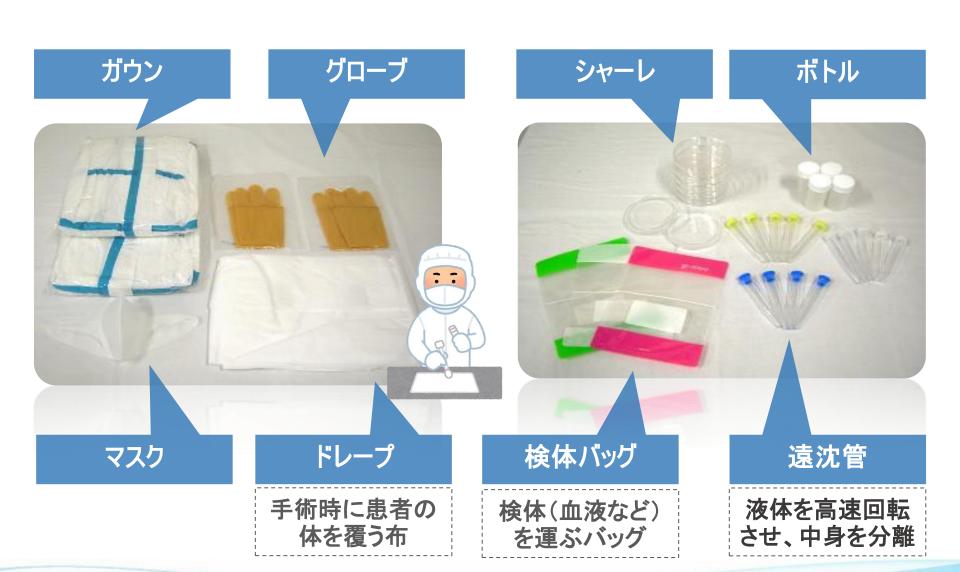
バックインボックス内袋

ロールフィルム

綿糸

ハムに使用

カップ容器


バター、デザート等 のカップに使用 木串•竹串

フランクフルト、団子、焼き鳥などの串

ガンマ線照射実施例_(実験・検査関連)

ガンマ線照射実施例

(実験動物関連)

飼料

床敷

マウス用ドーム

その他 動物輸送箱、給水ボトルなど

ガンマ線照射実施例(化粧品関連)

化粧品原料

無機鉱物(タルク、カオリンなど)

ガス滅菌からの切り替え

- ・圧力影響なし
- ・中まで殺菌できる

化粧品原料水

天然水の微生物数を ゼロにできた

リキッドアイライナー容器

ガス滅菌からの切り替え

・圧力影響なし

化粧水

防腐剤完全 ゼロを実現 できた

ガンマ線照射実施例

(再生医療・バイオ医薬品 関連など)

細胞培養装置用の シングルユースバッグ

従来の ステンレス 容器の代替

細胞培養サプリメント (牛胎児血清など)

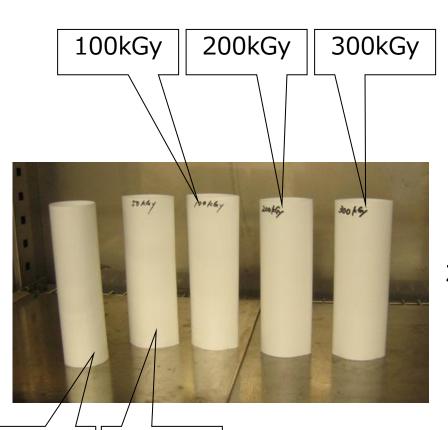
ウイルスの不活化

https://www.cytivalifesciences.co.jp/technologies/hycl

https://chemicaldaily.com/archives/396370

細胞培養用ディッシュ

https://www.sanplatec.co.jp/product.php?id=29


細胞培養装置の消耗品

https://www.astec-bio.com/pdf/CellCube.pdf

ポリエチレンの耐熱性向上、架橋

放射線照射したポリエチレン(PE)パイプ

加熱:150℃

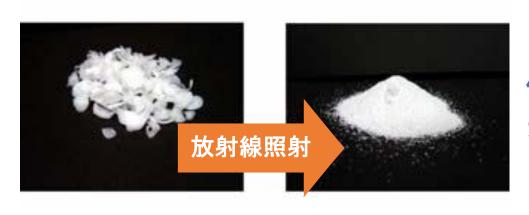
電線の被覆材などに 利用されています

未照射

50kGy

PEは照射によって耐熱性が向上します

日本原子力研究開発機構「材料開発に役立つ放射線加工技術講習会」2007.9.6



フツ素樹脂の低分子化

分解

PTFE(四フッ化エチレン樹脂)、製品名:テフロン(デュポン)

非粘着性 難燃性 低摩擦性

優れた特性失われない

四フッ化エチレン樹脂(PTFE)は、酸やアルカリに強く、 非常に丈夫な材料です

高性能の離型剤や潤滑剤 として利用される

日本原子力研究開発機構 HPより

微生物試験から実用照射まで

微生物試験から ガンマ線照射まで トータルサービス をご提供いたします。

なんでもご相談ください!

ありがとうございました

お問い合わせ (工場見学、WEB会議、お打ち合わせ等) は・・・

(株) コーガアイソトープ 営業部 仲谷

E-mail: information@koga-isotope.co.jp

まで、お願いします。

